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Neural nets as machine learning algorithm

• NNs can be both supervised and unsupervised algorithms,
depending on flavour:
• multi-layer perceptron (MLP) – supervised
• RNNs, LSTMs – supervised
• auto-encoder – unsupervised
• self-organising maps – unsupervised

(Herbelot 2018)
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Neural networks: a motivation
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How to recognise digits?

• Rule-based: a ‘1’ is a vertical bar. A ‘2’ is a curve to the right
going down towards the left and finishing in a horizontal line. . .

• Feature-based: number of curves? of straight lines? directionality
of the lines (horizontal, vertical)?

• Well, that’s not gonna work. . .

(Herbelot 2018)
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Learning your own features

• We don’t know what people pay attention to when recognizing
digits (which features to use).

• Don’t try to guess. Just let the system decide for you.

• A nice architecture to do this is the neural network:
• Good for learning visual features.
• Also good for learning latent linguistic features (remember SVD?)

(Herbelot 2018)
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Neural Nets
• A neural net is a set of interconnected neurons organised in
‘layers’.

• Typically, we have one input layer, one output layer and a
number of hidden layers in-between:

This is a multi-layer perceptron (MLP).
By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=24913461

(Herbelot 2018)
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Neural network zoo

Go visit http://www.asimovinstitute.org/neural-network-zoo/ – very cool!

(Herbelot 2018)

http://www.asimovinstitute.org/neural-network-zoo/
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The artificial neuron

• The output of the neuron (also called ‘node’ or ‘unit’) is given by:

a = ϕ

(
m∑
j=0

wjxj

)
where ϕ is the activation function.

• If this output is over a threshold, the neuron ‘fires’.

(Herbelot 2018)
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A (simplified) example

• Should you bake a cake? It depends on the following features:
• Wanting to eat cake (0/+1)
• Having a new recipe to try (0/+1)
• Having time to bake (0/+1)

• How much weight should each feature have?
• You like cake. Very much. Weight: 0.8
• You need practice, as become a pastry chef is your professional

plan B. Weight: 0.3
• Baking a cake will take time away from your computational

linguistics project, but you don’t really care. Weight: 0.1

(Herbelot 2018)
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A (simplified) example

• We’ll ignore ϕ for now, so our equation for the output of the
neuron is:

a =

m∑
j=0

wjxj

• Assuming you want to eat cake (+1), you have a new recipe (+1)
and you don’t really have time (0), our output is:

0.8 ∗ 1 + 0.3 ∗ 1 + 0.1 ∗ 0 = 1.1

• Let’s say our threshold is 0.5, then the neuron will fire (output
1). You should definitely bake a cake.

(Herbelot 2018)
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From threshold to bias

• We can write
∑m

j=0 wjxj as the dot product −→w · −→x

• We usually talk about bias rather than threshold – which is just
a way to move the value to the other side of our inequality:
• if −→w · −→x > t, then 1 (fire) else 0
• if −→w · −→x − t > 0, then 1 (fire) else 0

• The bias is a ‘special neuron’ in each layer, with a connection to
all other units in that layer.

(Herbelot 2018)
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But hang on. . .

• Didn’t we say we didn’t want to encode features? Those inputs
look like features. . .

• Right. In reality, what we will be inputting are not
human-selected features but simply a vectorial representation of
our input.

• Typically, we have one neuron per value in the vector.

• Similarly, we have a vectorial representation of our output (which
could be as simple as a single neuron representing a binary
decision).

(Herbelot 2018)
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Neural nets and word meaning

Instead of creating the co-occurrence matrix and then
reducing its dimensions. . .

Why not learn the compressed representations directly
from the data?
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Word embeddings

• give words from a vocabulary as input to a (feed-forward) neural
network

• embed them as vectors into a lower dimension space

• fine-tune through back-propagation

• −→ yields word embeddings as the weights of the first layer,
usually referred to as Embedding Layer

• The objective is to create word representations (embeddings)
that are good at predicting the surrounding context.
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Distributional vs. Distributed Representation

Distributional Representation
• captures linguistic
distribution of each word in
form of a high-dimensional
numeric vector

• typically based on
co-occurrence counts (aka
“count” models)

• based on distributional
hypothesis: similar
distribution s̃imilar meaning
(similar distribution = similar
representation)

Distributed Representation
• sub-symbolic, compact
representation of words as
dense numeric vector

• meaning is captured in
different dimensions and it is
used to predict words (aka
“predict” models)

• similarity of vectors
corresponds to similarity of
the words

• aka word embeddings
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Methods to train word embeddings

• First and most used: word2vec (see below)

• FastText: similar to word2vec but trained on character n-grams
instead of words

• GloVe: Global Vectors - first uses co-occurrence matrix,
calculates ratios of probabilities; trained with log-bilinear
regression model

• ELMo, BERT, Flair: Contextualized word embeddings

• among many others. . .
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word2vec
Mikolov et al, 2013

Framework for learning word embeddings; main idea:
• takes words from a very large corpus of text as input
(unsupervised)

• learn a vector representation for each word to predict between
every word and its context

• fully connected feed-forward neural network with one hidden layer

• Two main algorithms:
• Continuous Bag of Words (CBOW): predicts center word

from the given context (sum of surrounding words vectors)
• Skip-gram: predicts context taking the center word as input
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Center word and context

• Embedding models consider the history (previous words) and the
future (following words) of a center word1

• The number of words considered is called the window size
(standard size = 5)

• Importance of window size
• “Australian scientists discover stars with telescopes.”
• context window size 2 center word context window size 2
• Note: different meaning of “stars” with and without telescope

1Unlike language models, who only look at past words for predictions
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CBOW

• It uses continuous representations whose order is of no importance
• CBOW can be seen as a precognitive language model
• Objective function similar to a language model

Jθ =
1

T

T∑
t=1

logp(wt : | : wt−n, . . . , wt−1, wt+1, . . . , wt+n)
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Skip-gram

• Instead of using the surrounding words to predict the centre word as with
CBOW, skip-gram uses the centre word to predict the surrounding words

• objective thus sums the log probabilities of the surrounding n words to the
left and to the right of the target word wt

Jθ =
1

T

T∑
t=1

∑
−n≤j≤n,6=0

logp(wt+j : | : wt)
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Don’t count, predict!
Baroni et al., ACL 2014
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Evaluation: Analogy

−−→
king −−−→man+−−−−−→woman

1. queen
2. monarch
3. princess
4. kings . . .

• Word Analogy Task: a is to b, as c is to ?
• How many word analogies can the trained embeddings predict
correctly?
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Evaluation: Topics

−−−−−→
hungry +

−−−−−→
monster

• monsters, beast, ravenous, creature, monstrous, starving,
famished, hunger, thirsty, cannibal, ravening, . . .

• Pretty good, but a lot of emphasis on (food-like) hunger

−−−−−→
hungry +

−−−−−→
monster −

−−→
food

• Refine topic by removing too generically food-related words
• monstrous, monsters, beast, ravenous, ogre, monster-like,
three-headed, child-eating, creature, mad, bloodthirsty,
frightened, . . .
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Evaluation: Descriptions
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Evaluation: Descriptions

• baby learning to walk
• amble, totter, trudge, stagger, march, strut, sidle, lurch

• drunk man walking down street
• stagger, amble, trudge, march, trotter, sidle, strut, lurch

• weary farmer returning home through mud
• trudge, stagger, amble, lurch, march, totter, strut, sidle

• two teenagers guiltily approaching someone
• sidle, amble, stagger, totter, trudge, lurch, march, strut

• someone who has just been shot
• stagger, march, trudge, sidle, lurch, amble, strut, totter

• a lazy walk in the country
• amble, trudge, stagger, march, totter, sidle, strut, lurch
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The unreasonable effectiveness . . .

• In 2015, Andrej Karpathy wrote a blog entry which became
famous: The unreasonable effectiveness of Recurrent Neural
Networks2.

• How a simple model can be unbelievably effective.

2https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrence

• Feedforward NNs which take a vector as input and produce a
vector as output are limited.

• Putting recurrence into our model, we can now process sequences
of vectors, at each layer of the network.
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Architectures

What might these architectures be used for?

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

(Herbelot 2018)
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Language Modeling

• A language model (LM) is a model that computes the probability
of a sequence of words, given some previously observed data.

• LMs are used widely, for instance in predictive text on your
smartphone:

Today, I am in (my|bed|Munich|Ulaanbaatar).

(Herbelot 2018)
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The Markov assumption

• Let’s assume the following sentence:

I am in Rome.

• We are going to use the chain rule for calculating its probability:

P (An, . . . , A1) = P (An|An−1, . . . , A1) · P (An−1, . . . , A1)

• For our example,

P (I, am, in,Rome) = P (Rome|in, am, I)·P (in|am, I)·P (am|I)·P (I)

(Herbelot 2018)
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The Markov assumption
• The problem is, we cannot easily estimate the probability of a
word in a long sequence.

• There are too many possible sequences that are not observable in
our data or have very low frequency:

P (Rome|in, am, I, today, but, yesterday, there, . . .)

• So we make a simplifying Markov assumption:

P (Rome|in, am, I) ≈ P (Rome|in)(bigram)

or
P (Rome|in, am, I) ≈ P (Rome|in, am)(trigram)

• That is, we are not taking into account long-distance
dependencies in language.

• Trade-off between accuracy of the model and trainability.

(Herbelot 2018)
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LMs as a generative model

• In your smartphone, the LM does not just calculate a sentence
probability, it suggests the next word to what you’re writing.

• Given the sequence I am in, for each word w in the vocabulary,
the LM can calculate:

P (w|in, am, I)

• The word with the highest probability is returned

(Herbelot 2018)
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Language modeling with RNNs

• The sequence given to the RNN is equivalent to the n-gram of a
language model.

• Given a word or character, it has to predict the next one.

(Herbelot 2018)
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Example: Rewriting Harry Potter

http://www.botnik.org/content/harry-potter.html
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Types of recurrent NNs

• RNNs (Recurrent Neural Networks): the original version.
Simple architecture but does not have much memory.

• LSTMs (Long Short-Term Memory Networks): an RNN
able to remember and forget selectively.

• GRUs (Gated Recurrent Units): a variation on LSTMs.
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Trends and future directions
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Subword-level embeddings

• Word embeddings have been augmented with subword-level
information for many applications
• e.g. named entity recognition, part-of-speech tagging, dependency

parsing, and language modelling

• Often use a CNN or a BiLSTM
• input: characters of a word
• output: a character-based word representation

• Character n-grams features have been shown to be more powerful
than composition functions over individual characters

• Even smaller!
• subword units based on byte-pair encoding perform well for

machine translation and entity typing
• easily learned, but no real advantage over character-based

representations for most tasks

S. Ruder, Word embeddings in 2017: Trends and future directions
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OOV handling

• Main problem with pre-trained embeddings: unable to deal with
out-of-vocabulary (OOV) words

• One solution: subword-level embeddings – some success

• Recent approaches aim to generate OOV embedding on-the-fly
• e.g. initialize the embedding of OOV words as the sum of their

context words, then rapidly refine only the OOV embedding with
a high learning rate (Herbelot & Baroni, 2017)

S. Ruder, Word embeddings in 2017: Trends and future directions
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Evaluation

• Evaluation of pre-trained embeddings remain a contentious issue
• word similarity and analogy datasets have been shown to only

correlate weakly with downstream performance

• The RepEval Workshop at ACL 2016 exclusively focused on
better ways to evaluate pre-trained embeddings

• So far, best way to evaluate: extrinsic evaluation on downstream
tasks

S. Ruder, Word embeddings in 2017: Trends and future directions

https://sites.google.com/site/repevalacl16/
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Multi-sense embeddings

• Common criticism: embeddings are unable to capture polysemy

• Most approaches for learning multi-sense embeddings solely
evaluate on word similarity

• However, strong results in Neural Machine Translation −→
models are expressive enough to contextualize and disambiguate
words in context

• Yet, still need to understand if and how models are
disambiguating, and how to improve if necessary

S. Ruder, Word embeddings in 2017: Trends and future directions
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Phrases and multi-word expressions

• Problem: Embeddings fail to capture the meanings of phrases
and multi-word expressions
• Eg. kick the bucket, work hard, take a seat, etc.

• Some attempts to build phrase embeddings or better learn
compositional and non-compositional phrases

• explicitly modelling phrases has so far not shown significant
improvements on downstream tasks that would justify the
additional complexity

• a better understanding of how phrases are modelled in neural
networks would allow methods that augment the capabilities of
our models to capture compositionality and non-compositionality
of expressions

S. Ruder, Word embeddings in 2017: Trends and future directions
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Bias

• Word embeddings trained on, e.g., Google News articles exhibit
female/male gender stereotypes to a disturbing extent (Bolukbasi
et al., 2016)

• Bias in models becoming big issue in the field

• What other biases are captured in embeddings, and how best to
remove bias?

S. Ruder, Word embeddings in 2017: Trends and future directions
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Temporal dimension

• Word meanings are subject to continuous change

• We can consider the temporal dimension and the diachronic
nature of words

• Useful to reveal laws of semantic change, model temporal word
analogy or relatedness, and capture dynamics of semantic
relations.

S. Ruder, Word embeddings in 2017: Trends and future directions
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Lack of theoretical understanding

• Little work on gaining a better theoretical understanding of the
word embedding space and its properties
• e.g. that summation captures analogy relations

• Some insights explored in Arora et al. (2016), Gittens et
al. (2017), Mimno & Thompson (2017)

S. Ruder, Word embeddings in 2017: Trends and future directions
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Task and domain-specific embeddings

• Downside of pre-trained embeddings: news data for training
often different than data for tasks
• also hard to come by millions of unlabelled docs in most target

domains

• Some attempts to adapt pre-trained embeddings to capture
characteristics of target domain, and retain relevant existing
knowledge
• e.g. Lu & Zheng (2017): regularized skip-gram model to learn

cross-domain embeddings

• Or, use existing knowledge from semantic lexicons to augment
pre-trained embeddings with relevant information
• e.g. retro-fitting (Faruqui et al., 2015), injecting prior knowledge

like monotonicity (You et al., 2017) and word similarity (Niebler
et al., 2017), etc.

S. Ruder, Word embeddings in 2017: Trends and future directions
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Transfer learning

• Aim to create contextualized word vectors (rather than adapting
them)
• augment word embeddings with embeddings based on hidden

states of models pre-trained for certain tasks
• e.g. machine translation or language modeling

• Bidirectional Encoder Representations from
Transformers (BERT)
• introduced by Google AI in 2018
• first deeply bidirectional, unsupervised language representation,

pre-trained using only a plain text corpus
• stunning results on numerous NLP tasks
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Embeddings for multiple languages

• Goal to create multilingual word embeddings

• Methods being developed that learn cross-lingual representations
with as few parallel data as possible

• Some work also aims to learn multilingual embeddings without
parallel data

• Note issue of training for low-resource languages

S. Ruder, Word embeddings in 2017: Trends and future directions
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Thanks! Any questions?
https://www.vecchi.com/eva/teaching/modelingmeaning.html

https://www.vecchi.com/eva/teaching/modelingmeaning.html
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